Approximately 26% of Americans over 18 years of age suffer from a mental disorder. In patients 55 years or older, the prevalence of a mental illness is 20%. The most common psychiatric conditions in the elderly are anxiety, severe cognitive impairment, and mood disorders (depression or bipolar disorder). Unfortunately, some psychiatric treatments, both medical and electroconvulsive therapy (ECT), can cause glaucoma, and glaucoma therapy such as timolol, brimonidine, and pilocarpine can cause psychiatric symptoms. This article provides an overview of the relationship between glaucoma and psychiatric treatments.

MEDICAL THERAPIES

Medications used to treat psychiatric conditions (psychotropic drugs) can be divided into two categories: (1) anticholinergic medications and (2) medications that result in swelling of the ciliary body and anterior rotation of the ciliary body (idiosyncratic reaction).

Anticholinergic agents block the neurotransmitter acetylcholine in the central and the peripheral nervous system. Anticholinergics inhibit parasympathetic nerve impulses by selectively blocking the binding of the neurotransmitter acetylcholine to its receptor in nerve cells. This can cause glaucoma in individuals with narrow anterior chamber angles by dilating the pupil and causing pupillary block. Anticholinergic medications known to cause glaucoma include benzodiazepines (diazepam), tricyclic antidepressants (imipramine), and selective serotonin reuptake inhibitors (paroxetine, citalopram, escitalopram, fluoxetine, and fluvoxamine).

The most notorious psychotropic medication that causes angle-closure glaucoma via ciliary body rotation is topiramate (Topamax; Ortho-McNeil Neurologics). Topiramate is a widely used psychiatric therapy indicated for epilepsy, migraine, alcohol addiction, nicotine addiction, peripheral neuropathy, radiculopathy, and posttraumatic stress disorders. The drug’s mechanism involves the inhibition of carbonic anhydrase, glutamate receptors, and calcium channels; the blockage of sodium channels; and the enhancement of gamma-aminobutyric acid receptors. Topiramate is a sulfonamide-based medication with a half-life of 24 hours, and it is excreted via urine.

Glaucoma induced by topiramate is idiosyncratic and characterized by swelling of the ciliary body and lens due to the relaxation of the zonules, an anterior rotation of the lens-iris diaphragm, a shallow anterior chamber in the eye of a patient on topiramate. Glaucoma associated with therapies for psychiatric disorders can cause or exacerbate glaucoma.
chamber (Figure 1), and bilateral angle-closure glaucoma (ACG). Patients report blurry vision, headache, and photosensitivity. Physical examination typically reveals acute myopia (up to 8.75 D), choroidal effusion and detachment, nongranulomatous uveitis (Figure 2A and B), angle closure on gonioscopy, and prominent ciliary body processes on ultrasound biomicroscopy (Figure 3).

The treatment for ACG induced by topiramate is the immediate discontinuation of the drug. Supportive measures include maximal glaucoma medications, topical cycloplegics (atropine t.i.d.), and steroids (prednisolone acetate q.i.d. [Pred Forte 1%; Allergan, Inc.]), intravenous methylprednisolone (Medrol; Pfizer, Inc.) 250 mg, and intravenous mannitol 20% (100 mL b.i.d.). The glaucoma usually resolves within 1 week of treatment. Unlike in traditional ACG (or angle closure induced by anticholinergic medications), pilocarpine is contraindicated, because it can further narrow the anterior chamber angle and cause the ciliary muscle to spasm. A laser iridotomy is not a helpful treatment, because the mechanism of topiramate-induced ACG does not involve pupillary block. If a patient has a severe fibrinous reaction that results in secondary pupillary block, following the resolution of ciliary body swelling, however, a laser iridotomy can then be performed. Argon laser peripheral iridoplasty (200-mm spot size, 0.7 sec, 280 mW) can also be used to help open the angle if performed within 24 hours of a glaucoma attack. If there are severe peripheral synechiae with elevated IOP, a trabeculectomy may be indicated. Drainage of the suprachoroidal fluid has been reported but is not recommended.

Sequela after ACG caused by topiramate can occur; these include pupillary membranes, synechiae, cataracts, visual field defects, blindness, decreased endothelial cell density (polymegathism, pleomorphism), periorbital edema, diplopia, and nystagmus. These side effects can be avoided if the glaucoma is diagnosed early.

ELECTROCONVULSIVE THERAPY

ECT, formerly known as electroshock, was invented in 1977 for the treatment of depression and bipolar disorder and is associated with significant systemic side effects, including circulatory failure, cardiac arrest/arrhythmia, coronary occlusion, apnea, and death. ECT can increase IOP (range, 25-68 mm Hg). The mechanism of elevated IOP includes an increase in cerebral blood flow by 100% to 400%, also resulting in greater intracranial and venous pressure. The electrical stimulus to the cerebrum results in muscle spasms, but the blepharospasm’s effects on IOP is minimal. Similarly, the extraocular muscle spasm does not increase IOP above that of suxamethonium.

Medications used during anesthesia for ECT can have variable effects on IOP. Succinylcholine, a depolarizing muscle relaxant, can raise IOP, whereas other agents (barbiturates, benzodiazepine, propofol) can lower it. Intramuscular glycopyrrolate can result in pupillary dilation and subsequent ACG in susceptible individuals, specifically those with narrow angles or large cataracts and in Asians and women. Blood pressure can vary during anesthesia, and sudden increases in blood pressure can elevate IOP, despite choroidal autoregulation.

Patients should not undergo ECT within 3 weeks of intraocular surgery, and a visual field test should be performed.

(Continued on page 46)

| TABLE. IOP SPIKES DURING ECT IN AN EYE WITH AND WITHOUT A GLAUCOMA TUBE IMPLANT |
|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| IOP before ECT | IOP 1 minute after ECT | Δ IOP | IOP 2 minutes after ECT | Δ IOP | IOP 4 minutes after ECT | Δ IOP |
| No tube | 14 | 20 | 6 | 24 | 10 | 11 |
| Tube | 10 | 14 | 4 | 16 | 6 | 11 |

Abbreviations: ECT, electroconvulsive therapy; Δ, change

Note: All measurements in mm Hg
CONCLUSION

There is a high association between psychiatric disorders and glaucoma. Both medical therapy (anticholinergic agents and agents that cause ciliary body rotation) and ECT for psychiatric treatment can exacerbate or cause glaucoma. In the interest of early diagnosis and treatment, ophthalmologists need to be aware of how psychiatric conditions and medications can affect glaucoma.

The author acknowledges Alice Song, MD; Michael Song, BS; Trisa Palmares, MD; and Eddie Siu, BS, for their contributions to this research.

Julia Song, MD, is in private practice with DrSongVision in Pasadena and Long Beach, California. She acknowledged no financial interest in the products or companies mentioned herein. Dr. Song may be reached at (626) 844-9393; jsongmd@drsongvision.com.