Preoperative Macular Function Testing

CRST Europe asked five surgeons to discuss the importance of assessing macular function in cataract patients.

BY STEVE CHARLES, MD; SAMUEL MASKET, MD; JAY S. PEPOSE, MD, PhD; RICHARD TIPPERMANN, MD; AND WILLIAM B. TRATTLER, MD

STEVE CHARLES, MD

As a vitreoretinal surgeon, I have different perspectives on evaluating macular function and retinal risk factors in general from those of a cataract surgeon. The primary goal should be reducing complications by managing retinal diseases that coexist with the cataract, not just addressing informed consent issues. Spectral-domain optical coherence tomography (OCT) using multiple-slice monochrome B-scan display provides the most information. Time-domain OCT is less precise, and pseudocolor displays produce pseudointerfaces. Thickness measurements alone obscure the differential diagnosis, which includes epimacular membrane; partial- and full-thickness macular holes; vitreomacular traction syndrome; macular schisis; subretinal fluid secondary to a choroidal neovascular membrane or retinal detachment surgery; retinal edema overlying choroidal neovascularization; diabetic macular edema (DME); and macular edema secondary to central, hemifield, or branch retinal vein occlusion.

Cataract surgery does not cause progression of age-related macular degeneration (AMD), as shown by an analysis of data from the Age-Related Eye Disease Study (AREDS). Nonetheless, the surgeon and patient should be aware of the potential for a suboptimal visual outcome. OCT and autofluorescence are superb at detecting geographic atrophy secondary to dry, not just wet, AMD.

In my opinion, most cases of DME said to have been made worse by cataract surgery are actually examples of postoperative inflammatory edema. Macular edema secondary to DME or retinal vein occlusion should be treated with a vascular endothelial growth factor inhibitor prior to cataract surgery. Regarding the association between cataract surgery and retinal detachment, I believe that coinherited lattice degeneration and other peripheral retinal abnormalities—not increased axial length—cause this complication after cataract surgery. Axial length is a proxy for myopic vitreoretinal disorders; there is no evidence that a longer eye stretches the retina or is the proximal cause of retinal detachment.

SAMUEL MASKET, MD

All clinicians know that the appearance of the macula can be misleading, and one that looks highly irregular may have excellent visual potential. For that reason, it is essential to test macular potential to aid in surgical decision-making. I would argue that retinal function testing and the evaluation of retinal anatomy and pathology are as important as OCT and other imaging. Each has its role in assessing individuals with ocular comorbidities. I perform tests of visual function as well as those of ocular pathology. This information allows me to be helpful to the patient during discussions for or against cataract surgery. It can also promote reasonable expectations for the procedure.

An assessment of macular function is also integral to my assessment of patients for premium IOLs. My patients must demonstrate normal macular anatomy as well as normal macular function to be considered candidates for multifocal IOLs. For example, an amblyopic eye will have normal macular anatomy but reduced macular function, and such patients typically do not benefit from multifocal IOLs. I use the Retinal Acuity Meter (AMA Optics, Inc., Miami).

JAY S. PEPOSE, MD, PhD

Macular function assessment is an important element of the preoperative evaluation of all patients considering cataract surgery. The anatomic appearance of the macula on biomicroscopy or OCT does not always correlate with macular function. I have seen patients with what appears to be a normal macula on biomicroscopy who have a surprisingly low reading of potential retinal acuity and a gossamer-thin epiretinal membrane apparent on OCT. Conversely, some patients present with apparently extensive myopic degeneration, yet they have normal function on retinal acuity testing. Individuals with significant comorbid macular or optic nerve pathology that diminishes contrast sensitivity may not be suitable candidates for multifocal IOLs; these lenses have been associated with decreased contrast sensitivity compared with aspheric monofocal or accommodating designs.
Along with detailed history and careful fundus examination, an assessment of macular potential assists the ophthalmologist with preoperative counseling, short- and long-term prognostication, and the informed consent process in terms of the relative risks and benefits of surgery. It also aids in the decision to order additional tests such as OCT and fluorescein angiography or to refer the patient to a retina subspecialist. The importance of preoperatively assessing potential retinal acuity will grow, because retinal and optic nerve comorbidity will become more prevalent as the population ages. For example, the AREDS found that 20.2% of individuals with early-stage AMD progressed to advanced disease over 5 years, a rate of 4.0% per year.\(^2\) During a 12.7-year follow-up, 40.6% of highly myopic eyes developed disease over 5 years, a rate of 4.0% per year.\(^2\) During a 12.7-year follow-up, 40.6% of highly myopic eyes developed progressive myopic maculopathy, including diffuse atrophy, lacquer cracks, and choroidal neovascularization.\(^3\) In a recent study of 45 patients referred for cataract extraction who were prospectively evaluated with OCT, epiretinal membranes were noted in seven (15.6%), some of which were not detectable byophthalmoscopy alone.\(^4\)

We routinely use the RAM to assess the potential visual function of patients with 20/100 or better preoperative visual acuity. It is not reliable for patients with a BCVA of 20/200 or worse. The RAM also helps us identify patients with comorbid retinal or optic nerve pathology that may not be detected by history and inspection alone, particularly in eyes with cloudy media. No test of retinal function, including the RAM, has 100% specificity and sensitivity. Nevertheless, several studies demonstrate greater predictive accuracy with the RAM compared with the Potential Acuity Meter (Marco, Jacksonville, Florida). The predictability of these tests may vary in specific forms of macular comorbidity.\(^5\)-\(^7\)

RICHARD TIPPERMAN, MD

Evaluation of macular function and visual inspection of the macula are essential prior to cataract surgery. Certain patients’ vision will be reduced for both far and near and will not improve with pinhole testing. In these instances, retinal acuity testing is essential to predict their potential visual acuity after cataract surgery. It provides information that will help the ophthalmologist decide whether to proceed with surgery and identify appropriate candidates for premium IOLs. OCT provides information about the anatomy of the macula, not its functional capability.

WILLIAM B. TRATTLER, MD

Patients with visually significant cataracts have reduced vision, but macular health and visual potential must be assessed and discussed with them before surgery. My technicians perform a potential visual acuity test prior to all cataract procedures. If the evaluation reveals reduced visual results, we attempt to determine the reason and counsel the patient on what to expect regarding vision after cataract surgery. We also obtain OCT scans of the macula to screen for abnormalities that may affect postoperative visual results. Some patients may have a normal potential acuity test but a subtle epiretinal membrane visible on OCT that may worsen postoperatively. In these cases, I prefer a highly potent steroid (Durezol; Alcon Laboratories, Inc., Fort Worth, Texas) and may extend topical NSAID use beyond 4 weeks. ■

Steve Charles, MD, is a Clinical Professor of Ophthalmology at the University of Tennessee in Nashville, an Adjunct Professor of Ophthalmology at Columbia College of Physicians & Surgeons, New York, and an Adjunct Professor of Ophthalmology at the Chinese University of Hong Kong. Dr. Charles did not provide financial disclosure information. He may be reached at tel: +1 901 767 4499; e-mail: scharles@att.net.

Samuel Masket, MD, is a Clinical Professor at the David Geffen School of Medicine, UCLA, and is in private practice in Los Angeles. Dr. Masket states that he has no financial interest in the product or companies mentioned. He may be reached at tel: +1 310 229 1220; e-mail: avcmasket@aol.com.

Jay S. Pepose, MD, PhD, is Director of the Pepose Vision Institute and a Professor of Clinical Ophthalmology and Visual Sciences at the Washington University School of Medicine, St. Louis. Dr. Pepose states that he has no financial interest in the products or companies mentioned. He may be reached at tel: +1 636 728 0111; e-mail: jpepose@peposenvisor.com.

Richard Tipperman, MD, is an attending surgeon at Wills Eye Hospital, Philadelphia. Dr. Tipperman did not provide financial disclosure information. He may be reached at tel: +1 484 434 2716; e-mail: rtipperman@mindspring.com.

William B. Trattler, MD, is Director of the Center for Excellence in Eye Care, Miami. Dr. Trattler states that he has received research support from, is a consultant to, and/or is on the speakers’ bureau of Alcon Laboratories, Inc.; Allergan, Inc.; and Ista Pharmaceuticals, Inc. Dr. Trattler may be reached at tel: +1 305 598 2020; e-mail: wtrattler@earthlink.net.
