Surgical Correction of Presbyopia

Surgical options for the correction of presbyopia have generated considerable ophthalmic interest for centuries. A myriad of surgical options exist primarily because the etiology of presbyopia is not well understood. Hermann von Hemholtz theorized that accommodation results from elastic properties of the lens, which add to the lens' anterior and posterior dimensions and increase its power when zonular tension is relieved during ciliary muscle contraction. Thus, Hemholtz believed that presbyopia is caused by nuclear sclerosis of the lens, which becomes unable to change shape with age. This theory has been challenged by Ronald Schachar, MD, who suggests the longitudinal fibers of the ciliary muscle contract during accommodation, thereby placing more tension on the equatorial zonules while relaxing the anterior and posterior zonules. This tension difference causes an enlargement in the equatorial diameter that increased the central lenticular volume and, thus, the power of the lens.¹

Methods of presbyopic surgical correction include monovision, anterior ciliary sclerostomy, scleral expansion bands, and lens implantation.

The following articles were reviewed for this discussion:

MONOVISION

Monovision is a simple method used to mask presbyopia. Typically, the patient’s dominant eye is corrected for distance, and his nondominant eye is corrected for near tasks (-1.00- to -2.00-D endpoint). This correction can be achieved with corneal treatments such as LASIK, conductive keratoplasty, and PRK, as well as with monofocal lens implantation.

Jain et al2 reported outcomes in 144 monovision patients following refractive surgery. Thirty-five patients (24%) had bilateral distance correction postoperatively, and 42 (29%) had anisometropia of less than -3.50D (monovision). Twenty-one percent of patients had more than 3.50D of anisometropia and were not evaluated in this study. Although 10 monovision patients underwent a monovision trial prior to surgery, two patients in this group requested correction, due to blurry vision and residual astigmatism. The overall monovision subjective satisfaction rate was 88%, slightly higher than the mean success rate of 76% found in the literature.

ANTERIOR CILIARY SCLEROSTOMY

Anterior ciliary sclerostomy employs radial cuts in the sclera overlying the ciliary body to allow the sclera to extend, which can increase the space between the crystalline lens and the ciliary body. Researchers1 reported that anterior ciliary sclerostomy increases the prism value of accommodation by 1.3 prism diopters (defocus, near point, and retinoscopy). However, the results of the procedure in nine eyes. Although 10 monovision patients underwent a monovision trial prior to surgery, two patients in this group requested correction, due to blurry vision and residual astigmatism. The overall monovision subjective satisfaction rate was 88%, slightly higher than the mean success rate of 76% found in the literature.

SCLERAL EXPANSION BANDS

Scleral expansion bands are four arcuate segments inserted into scleral loops located in four quadrants. This procedure is based on Schachar's theory of accommodation. Malecze et al3 investigated scleral expansion bands in six subjects (four monocular and two bilateral implantations). The investigators found no increase in near visual acuity (40cm) or in accommodation amplitude 1 year postoperatively compared with preoperative values. Three patients requested removal of the segments due to a lack of beneficial effect.

IOLs

IOLs have been used in refractive lensectomy or in conjunction with cataract extraction to correct presbyopia. Jacob et al4 evaluated multifocal IOL implantation (Array multifocal lens; Advanced Medical Optics, Inc., Santa Ana, CA) in patients with unilateral cataracts. Fifty-four patients received monocular implants, and 41 received multifocal lenses. No difference in dependency on the distance spectacle correction was noted postoperatively, and 81% of the multifocal patients believed they could function at near compared with 49% of monofocal subjects. This study was not blind, however; subjects' preoperative education regarding the limits of the type of lens implanted may have influenced the results. Additionally, four lenses became dislocated during the study; three were multifocal.

Küchle et al5 reported the results of an accommodative PCIOL (Akkommodative 1CU; Humanoptics AG, Erlangen, Germany) implanted in 20 eyes compared to a monofocal PCIOL implanted in 20 eyes. The 1CU is intended to allow the patient to accommodate by means of anterior movement of the lens haptic as the ciliary muscle contracts. The amount of pseudophakic accommodation produced was limited—less then 1.25D for all methods of accommodation tested (defocus, near point, and retinoscopy).

Cummings et al6 evaluated the AT-45 pseudophakic accommodating IOL (Crystalens; Eyeonics Inc., Aliso Viejo, CA) in 75 eyes of 62 patients. This lens is designed to allow horizontal movement along the visual axis of the eye using the natural physiology of the intact ciliary muscles. Uncorrected distance visual acuity was 20/40 or better in 90% of patients, and 97% of patients (60/62) had uncorrected near visual acuity of 20/30 or better. No complications or adverse events were reported.

Baikoff et al7 evaluated multifocal anterior chamber phakic lenses (Vivarte presbyopic phakic refractive lens; Ioltech Laboratories, La Rochelle, France) implanted in 55 eyes of 33 patients. Eighty-four percent of patients had UCVA of 20/33 at distance and near UCVA of J2 or better. Ten percent of eyes developed pupil ovalization in bright light conditions secondary to the implantation of a large lens. No endothelial cell loss was noted. Eighteen percent of patients reported seeing halos, although only two of 33 eyes experienced vision difficulty that interfered with patients' nighttime driving. The authors suggested that demanding patients and those whose professions require significant night driving be considered noncandidates for phakic bifocal lens implantation.

THE BOTTOM LINE

Nearly all studies reviewed commented that proper patient selection and extensive education are crucial to the success of presbyopic correction. However, no treatment modality yields nearly 100% success in visual performance and comfort. The simplest technique to mask presbyopia is monovision, which is extremely successful.
in patients who have previously worn monovision contact lenses. Further studies may determine if the benefit of presbyopic correction is worth the surgical risk.

Reviewers

Arun Gulani, MD, MS, is a consultant to Bausch & Lomb but states that he holds no financial interest in any product or other company mentioned herein. Dr. Gulani may be reached at (904) 296-7393; gulanivision@aol.com.

Tracy Swartz, OD, MS, states that she holds no financial interest in any product or company mentioned herein. Dr. Swartz may be reached at (615) 321-8881; drswartz@wangvisioninstitute.com.

Panel Members

Helen J. Abdelmalak, OD, is a resident in optometry at the Wang Vision Institute in Nashville, Tennessee. She states that she holds no financial interest in any product or company mentioned herein. Dr. Abdelmalak may be reached at (615) 321-8881; dra@wangvisioninstitute.com.

Y. Ralph Chu, MD, is Clinical Assistant Professor at the University of Minnesota. He is on the Speakers Bureau for Advanced Medical Optics, Inc., but states that he holds no financial interest in any product or other company mentioned herein. Dr. Chu may be reached at (952) 835-1235; yrchu@chuvision.com.

Walid Haddad, MD, is a cornea fellow at the Wang Vision Institute in Nashville, Tennessee. He states that he holds no financial interest in any product or company mentioned herein. Dr. Haddad may be reached at (303) 470-8388; md@walidhaddad.com.

Paul Karpecki, OD, FAAO, is Clinical Director of Cornea, Cataract, and Refractive Surgery at the Moyes Eye Institute in Kansas City, Kansas. He states that he holds no financial interest in any product or company mentioned herein. Dr. Karpecki may be reached at (816) 746-9800; pkarpecki@moyeseye.com.

Jay S. Pepose, MD, PhD, is Professor of Clinical Ophthalmology at Washington University, St. Louis. He states that he holds no financial interest in any product or company mentioned herein. Dr. Pepose may be reached at (636) 728-0111; jpepose@peposevision.com.

Ming Wang, MD, PhD, states that he holds no financial interest in any product or company mentioned herein. Dr. Wang may be reached at (615) 321-8881; drwang@wangvisioninstitute.com.

Keming Yu, MD, PhD, is a cornea fellow at the Wang Vision Institute in Nashville, Tennessee. He states that he holds no financial interest in any product or company mentioned herein. Dr. Yu may be reached at (615) 321-8881; yukeming66@hotmail.com.